### Mean Comparisons

ANOVA tests the null hypothesis:

$$\mu_1 = \mu_2 = \dots = \mu_1$$

What we really want to know is which means differ and how.

$$\mu_1 = \mu_2$$

$$\mu_1 = \mu_1$$

$$\mu_2 = \mu_1$$

# Mean Comparisons Approaches

- Multiple Comparison Procedures
- Contrasts
- Curve Fitting

# Mean Comparisons Considerations

#### **Qualitative** – classification variables

- Multiple Comparison Procedures
- Contrasts

#### Quantitative – numerical variables

- Orthogonal Polynomial Contrasts
- Curve Fitting

## Least Significant Difference

$$t = \frac{\overline{x}_1 - \overline{x}_2}{s_{\overline{x}_1 - \overline{x}_2}} = \frac{\overline{d}}{s_{\overline{d}}} = \frac{LSD}{s_{\overline{d}}}$$

$$LSD = t_P \times s_{\bar{d}}$$

Where  $t_p$  is the critical t value at a given P level.

## Least Significant Difference

$$LSD = t_{.05} \times S_{\overline{d}} = t_{.05} \times \sqrt{\frac{2MSE}{r}}$$

$$LSD = t_{.05} \times \sqrt{2} \times S_{\bar{x}}$$

$$LSD = t_{.05} \times \sqrt{2} \times \frac{S}{\sqrt{r}}$$

# One-Factor ANOVA Switchgrass Example

| Source   | DF | Sum of<br>Squares | Mean<br>Square | F Value | Pr > F |  |  |
|----------|----|-------------------|----------------|---------|--------|--|--|
| Cultivar | 9  | 355.5271          | 39.50301       | 4.57    | 0.0002 |  |  |
| Error    | 50 | 432.5709          | 8.651419       |         |        |  |  |
| Total    | 59 | 788.098           |                |         |        |  |  |

### Least Significant Difference Switchgrass Example

$$S_{\overline{x}} = \sqrt{\frac{MS_E}{r}} = \sqrt{\frac{8.651}{6}} = 1.20$$

$$S_{\overline{d}} = \sqrt{\frac{2MS_E}{r}} = \sqrt{\frac{2(8.651)}{6}} = 1.70$$

$$LSD = t_{.05} \times S_{\overline{d}} = 2.008 \times 1.70 = 3.41$$

## Least Significant Difference Switchgrass Example

$$LSD = 3.41$$

| Cultivar | Mean Yield<br>(Mg/ha) |   |   |   |
|----------|-----------------------|---|---|---|
| С        | 14.2                  | а |   |   |
| G        | 13.9                  | а |   |   |
| D        | 12.7                  | а | b |   |
| Α        | 12.6                  | а | b |   |
| Н        | 9.6                   |   | b | С |
| E        | 9.4                   |   | b | С |
| ı        | 9.4                   |   | b | С |
| J        | 9.1                   |   |   | С |
| В        | 8.3                   |   |   | С |
| F        | 6.7                   |   |   | С |

### LSD Approximations

$$LSD_{.05} = 3 \times S_{\bar{x}} = 3(1.2) = 3.6$$

$$LSD_{.10} = 2.5 \times S_{\bar{x}} = 2.5(1.2) = 3.0$$

$$LSD_{.01} = 3.5 \times S_{\overline{x}} = 3.5(1.2) = 4.2$$

#### **Useful Formulae**

$$S_{\bar{x}} = SEM = \sqrt{\frac{MS_E}{r}} = \frac{RMSE}{\sqrt{r}}$$

95% 
$$CI = \pm t_{.05} \times SEM$$

$$S_{\overline{d}} = SED = \sqrt{\frac{2MS_E}{r}} = \sqrt{2} \times \frac{RMSE}{\sqrt{r}}$$

$$LSD = t_{0.5} \times SED$$

# Example Calculations Switchgrass Example

Switchgrass Example

$$SEM = \frac{RMSE}{\sqrt{r}} = \frac{2.491}{\sqrt{6}} = 1.20$$

95% 
$$CI = \pm t_{.05} \times SEM = \pm 2.008 \times 1.20 = \pm 2.41$$

$$SED = \sqrt{2} \times SEM = 1.414 \times 1.2 = 1.70$$

$$LSD = t_{.05} \times SED = 2.008 \times 1.70 = 3.41$$

# Comparison of Error Statistics Switchgrass Variety Trial





## **Hypothesis Testing**

**Error Rates** 

#### **Comparisonwise Error Rate:**

CER =  $P(Reject H_0 | H_0 is True)$ 

$$\mathcal{CC} = \frac{number\ Type\ I\ errors}{number\ nonsignificant\ comparisons\ tested}$$

## **Hypothesis Testing**

#### **Error Rates**

#### **Experimentwise Error Rate:**

EER = P(Reject at least one  $H_{01} ... H_{0n}$  | all  $H_0$  are True)

$$\mathcal{A}_{E} = \frac{number\ Type\ I\ errors}{number\ exp\ eriments\ with\ at\ least\ one\ true\ null\ hypothesi\ s}$$

# Possible Comparisons = t(t-1)/2





# Mean Comparison Procedures Other Common Approaches

- Tukey's Significant Difference
- Bonferroni Adjustment
- Duncan's Multiple Range Test (DMRT)
- Dunnett's Test
- Bayes Least Significant Difference (BLSD)
- Student-Newman-Kuels

## Tukey's Honest Significant Difference Switchgrass Example

$$HSD = q_{.05} \times S_{\overline{x}} = q_{.05} \times \sqrt{\frac{MS_E}{r}}$$

$$HSD = 4.68 \times 1.20 = 5.62$$

## Tukey's Honest Significant Difference Switchgrass Example

| Cultivar | Mean<br>Yield<br>(Mg/ha) | LSD |   |   | HSD |   |   |  |
|----------|--------------------------|-----|---|---|-----|---|---|--|
| С        | 14.2                     | а   |   |   | а   |   |   |  |
| G        | 13.9                     | а   |   |   | а   | b |   |  |
| D        | 12.7                     | a   | b |   | а   | b |   |  |
| Α        | 12.6                     | а   | b |   | а   | b |   |  |
| Н        | 9.6                      |     | b | С | а   | b | С |  |
| E        | 9.4                      |     | b | С | а   | b | С |  |
| ı        | 9.4                      |     | b | С | а   | b | С |  |
| J        | 9.1                      |     |   | С | а   | b | С |  |
| В        | 8.3                      |     |   | С |     | b | С |  |
| F        | 6.7                      |     |   | С |     |   | С |  |

# Bonferroni Adjustment Definition

The Bonferroni p value is calculated by multiplying the nominal  $\alpha$ -level by the number of planned comparisons:

$$\alpha_{adj} = \alpha_{C} \times n$$

- •The more comparisons made, the higher the adjusted alpha
- •e. g. if you plan to make 10 comparisons at  $\alpha$  = 0.05 then the adjusted  $\alpha$  is 0.5
- When the adjusted value > 1 it is set to 1

### Bonferroni Adjustment

**Reducing the Number of Comparisons** 

To use the Bonferroni Adjustment to control experimentwise error rate:

•Calculate the unadjusted  $\alpha$ -level that results in the desired adjusted  $\alpha$ -level for the family of comparisons:

$$\alpha_{\rm C} = \frac{\alpha_{\rm odj}}{n}$$

•The calculated  $\alpha$  is used for the planned pairwise comparisons using a t test.

### Bonferroni Adjustment Switchgrass Example

| Cultivar | Mean<br>Yield<br>(Mg/ha) | LSD |   |   | ŀ | HSE | Bon<br>* |   |   |
|----------|--------------------------|-----|---|---|---|-----|----------|---|---|
| С        | 14.2                     | а   |   |   | а |     |          | а |   |
| G        | 13.9                     | а   |   |   | а | b   |          | а |   |
| D        | 12.7                     | а   | b |   | а | b   |          | а |   |
| Α        | 12.6                     | а   | b |   | a | b   |          | а |   |
| Н        | 9.6                      |     | b | С | а | b   | С        | а | b |
| E        | 9.4                      |     | b | С | а | b   | С        | а | b |
| 1        | 9.4                      |     | b | С | а | b   | С        | а | b |
| J        | 9.1                      |     |   | С | а | b   | С        | а | b |
| В        | 8.3                      |     |   | С |   | b   | С        | а | b |
| F        | 6.7                      |     |   | С |   |     | С        |   | b |

<sup>\*</sup> Note that when used for all possible pairwise comparisons the Bonferroni method is more conservative than Tukey.

# Duncan's Multiple Range Test Background

- Multiple range tests compare sets of means based on the studentized range statistic q<sub>r</sub>.
- DMRT is just one of several (e. g. SNK) that use this general approach.
- The idea is to reduce the number of comparisons made by comparing groups containing multiple means.
- This reduces the experimentwise error rate.
- MRT are more conservative than an LSD but less so than the HSD.

# Duncan's Multiple Range Test Procedure

 Calculate the Least Significant Range of each size group of means:

```
DMRT_{i} = q_{i}S_{\overline{X}}
DMRT_{2} = 2.8406(1.2008) = 3.411
DMRT_{3} = 2.9872(1.2008) = 3.587
DMRT_{4} = 3.0846(1.2008) = 3.704
DMRT_{5} = 3.1546(1.2008) = 3.788
DMRT_{6} = 3.2079(1.2008) = 3.852
DMRT_{7} = 3.2512(1.2008) = 3.904
DMRT_{8} = 3.2862(1.2008) = 3.946
DMRT_{9} = 3.3153(1.2008) = 3.981
DMRT_{10} = 3.3403(1.2008) = 4.011
```

# Duncan's Multiple Range Test Procedure

- Sort treatment means
- Compare largest mean with smallest using the LSR for spanning 10 means:

```
\delta_{\text{C-F}} = 7.52 > 4.011 \therefore * @ \alpha = 0.05
```

 Continue comparing largest mean with next smallest using the appropriate LSR until a NS result occurs

```
\begin{split} &\delta_{\text{C-B}} = 5.87 > 3.981 \text{ ... *} \\ &\delta_{\text{C-J}} = 5.07 > 3.946 \text{ ... *} \\ &\delta_{\text{C-E}} = 4.80 > 3.904 \text{ ... *} \\ &\delta_{\text{C-I}} = 4.79 > 3.852 \text{ ... *} \\ &\delta_{\text{C-H}} = 4.54 > 3.788 \text{ ... *} \\ &\delta_{\text{C-A}} = 1.60 < 3.704 \text{ ... NS} \\ &\delta_{\text{C-D}} = 1.43 < 3.587 \text{ ... NS} \\ &\delta_{\text{C-G}} = 0.26 < 3.411 \text{ ... NS} \end{split}
```

# Duncan's Multiple Range Test Procedure

- Exception Rule: a mean difference cannot be considered \*
  if the two means fall within a subset of means already
  determined to be NS.
- Repeat the process starting with the second largest mean

 $\begin{array}{l} \delta_{\text{G-F}} \ 7.26 > 3.981 \ \therefore \ * \\ \delta_{\text{G-B}} \ 5.61 > 3.946 \ \therefore \ * \\ \delta_{\text{G-J}} \ 8.85 > 3.904 \ \therefore \ * \\ \delta_{\text{G-J}} \ 4.54 > 3.852 \ \therefore \ * \\ \delta_{\text{G-I}} \ 4.53 > 3.788 \ \therefore \ * \\ \delta_{\text{G-H}} \ 4.28 > 3.704 \ \therefore \ * \\ \delta_{\text{G-A}} \ 1.16 < 3.587 \ \therefore \ NS \\ \delta_{\text{G-D}} \ 0.26 < 3.411 \ \therefore \ NS \end{array}$ 

- Repeat the process starting with the third largest mean, and so on until the last comparison
- There are potentially n(n-1)/2 comparisons
- Use lines or letters to indicate means that are not different

## Duncan's Multiple Range Test Switchgrass Example

| Cultivar | Mean<br>Yield<br>(Mg/h<br>a) | LSD |   | DMRT |   |   | HSD |   |   | Bon<br>* |   |   |
|----------|------------------------------|-----|---|------|---|---|-----|---|---|----------|---|---|
| С        | 14.2                         | a   |   | a    |   |   | а   |   |   | a        |   |   |
| G        | 13.9                         | a   |   |      | a |   |     | а | b |          | a |   |
| D        | 12.7                         | а   | b |      | а | b |     | а | b |          | а |   |
| Α        | 12.6                         | а   | b |      | a | b |     | а | b |          | a |   |
| Н        | 9.6                          |     | b | С    |   | b | С   | а | b | С        | a | b |
| E        | 9.4                          |     | b | С    |   | b | С   | а | b | С        | a | b |
| ı        | 9.4                          |     | b | С    |   | b | С   | а | b | С        | а | b |
| J        | 9.1                          |     |   | С    |   | b | С   | а | b | С        | а | b |
| В        | 8.3                          |     |   | С    |   |   | С   |   | b | С        | а | b |
| F        | 6.7                          |     |   | С    |   |   | С   |   |   | С        |   | b |

# Mean Comparisons PROC ANOVA / GLM

```
proc anova;
    class trt;
    model yield = trt;
    means trt / lsd;
    means trt / duncan;
    means trt / tukey;
    means variety / bon;
    means variety / duncan;
run;
```

# Mean Comparisons Recommendations

- Avoid using MCP for making all possible pairwise comparisons
- Use MCP for preplanned comparisons
- Limit the number of comparisons
- For most agronomic data using an unprotected LSD provides a good balance between controlling Type I and II errors
- Use Tukey only in situations when the consequences of committing a Type I error are extreme but recognize that by doing so you increase the probability of committing a Type II error
- Other MCPs are not recommended